ACCEPT: Aerosols, Cloud Changes and Energy transport into the Polar domain: The role of feedbacks to the local climate responser
The Arctic is warming more than twice as fast as the rest of the world, with dramatically decreasing trends in sea-ice and snow cover (AMAP,2017). This ‘Arctic amplification’ of global warming is a feature of human-made climate change, but its causes and consequences are not fully understood.
Project details
Predictive capability of Arctic climate change is crucial, but it is hampered by our limited understanding of key processes in the climate system. Major progress is needed in climate modeling to improve our ability to estimate changes in the Arctic in the future, and to provide a better scientific underpinning for policy decisions.
The goal of ACCEPT is to bridge knowledge gaps related to cloud feedbacks and Arctic aerosol and energy transport by linking state-of-the-art aerosol modelling with updated observations in the Arctic. Observational advances, such as long-term ground-based measurements, and an increasing number of field campaigns and cloud remote sensing products, allow for a more thorough and comprehensive evaluation of model performance – both when it comes to representation of Arctic aerosols and transport, and to important cloud processes.
Involved CICERO staff
From other institutions
Elisabeth Andrews, Annica Ekman, Trude Storelvmo, Kostas Tsigaridis